Effect of stress and temperature on the micromechanics of creep in highly irradiated bone and dentin.
نویسندگان
چکیده
Synchrotron X-ray diffraction is used to study in situ the evolution of phase strains during compressive creep deformation in bovine bone and dentin for a range of compressive stresses and irradiation rates, at ambient and body temperatures. In all cases, compressive strains in the collagen phase increase with increasing creep time (and concomitant irradiation), reflecting macroscopic deformation of the sample. By contrast, compressive elastic strains in the hydroxyapatite (HAP) phase, created upon initial application of compressive load on the sample, decrease with increasing time (and irradiation) for all conditions; this load shedding behavior is consistent with damage at the HAP-collagen interface due to the high irradiation doses (from ~100 to ~9,000 kGy). Both the HAP and fibril strain rates increase with applied compressive stress, temperature and irradiation rate, which is indicative of greater collagen molecular sliding at the HAP-collagen interface and greater intermolecular sliding (i.e., plastic deformation) within the collagen network. The temperature sensitivity confirms that testing at body temperature, rather than ambient temperature, is necessary to assess the in vivo behavior of bone and teeth. The characteristic pattern of HAP strain evolution with time differs quantitatively between bone and dentin, and may reflect their different structural organization.
منابع مشابه
Hygrothermal Creep and Stress Redistribution Analysis of Temperature and Moisture Dependent Magneto-Electro-Elastic Hollow Sphere
In this article, the time-dependent stress redistribution analysis of magneto-electro-elastic (MEE) thick-walled sphere subjected to mechanical, electrical, magnetic and uniform temperature gradient as well as moisture concentration gradient is presented. Combining constitutive equations of MEE with stress-strain relations as well as strain-displacement relations results in obtaining a differen...
متن کاملNon-Axisymmetric Time-Dependent Creep Analysis in a Thick-Walled Cylinder Due to the Thermo-mechanical loading
In this study, the non-linear creep behaviour of a thick-walled cylinder made of stainless steel 316 is investigated using a semi-analytical method. The thick-walled cylinder is under a uniform internal pressure and a non-axisymmetric thermal field as a function of the radial and circumferential coordinates. For the high temperature and stress levels, creep phenomena play a major role in stress...
متن کاملStress Redistribution Analysis of Piezomagnetic Rotating Thick-Walled Cylinder with Temperature-and Moisture-Dependent Material Properties
In this article, the problem of time-dependent stress redistribution of a piezomagnetic rotating thick-walled cylinder under an axisymmetric hygro-thermo-magneto-electro-mechanical loading is analyzed analytically for the condition of plane strain. Using the constitutive equations, a differential equation is found in which there are creep strains. Primarily, eliminating creep strains, an analyt...
متن کاملCreep Behavior of Biodegradable Triple-Component Nanocomposites Based on PLA/PCL/Bioactive Glass for ACL Interference Screws
Background: The short-time creep behavior for a series of biodegradable nanocomposites which is used as implantable device into body is a crucial factor. In the current paper, we aimed to study the effect of bioactive glass nanoparticles (BGn) on creep and creep-recovery behaviors of PLA/PCL blends at different given load and different applied temperatures. Method: A series of biodegradab...
متن کاملCreep Stress Redistribution Analysis of Thick-Walled FGM Spheres
Time-dependent creep stress redistribution analysis of thick-walled FGM spheres subjected to an internal pressure and a uniform temperature field is investigated. The material creep and mechanical properties through the radial graded direction are assumed to obey the simple power-law variation throughout the thickness. Total strains are assumed to be the sum of elastic, thermal and creep strain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Materials science & engineering. C, Materials for biological applications
دوره 33 3 شماره
صفحات -
تاریخ انتشار 2013